



## Integrated Photonics: Game Changer or Just Another Tool?

<u>Moderator:</u> Mitchell Fields, Avago Technologies

Panelists:

Frank Chang, Inphi Chris Cole, Finisar Arlon Martin, Mellanox

# Disclaimer



 The views WE ARE expressing in this presentation are our own personal views and should not be considered the views or positions of the Ethernet Alliance.

## Why do we integrate?



- To achieve target metrics:
  - Cost
  - Size
  - Power
  - Performance
- Classic example is the integrated circuit.



Lot's functionality in there!

# What do we mean by Integrated Photonics?



- Integrated = put together
- Photonics = optical/electrical components (sources, modulators, VOAs, mux/demux, splitters/ combiners, detectors, ...)
- Integrated Photonics = putting together a selection of electro-optic components into a single package.



## Integration overview





## Game changer or not?



- Some key questions:
  - Where does integration make sense?
  - Which type of integration is best?
  - Is there a one-size-fits-all solution?
- Our expert panel will give their thoughts:
  - Chris Cole: "Integrated Photonics: Enabling Pluggable Modules"
  - Arlon Martin: "Integrated Photonics: Silicon Photonics for Embedded Applications"
  - Frank Chang: "IC Vendor Perspective: Photonic Integration to Enable Versatile, Low-cost Next-gen Optical (Coherent) links"
- Then we open it up to debate!





### Integrated Photonics: Enabling Pluggable Modules

Chris Cole 25 September 2013 Finisar TX

# Also 10 Gb/s SMF 1310nm DFB laser LR SFP+

© 2013 Ethernet Alliance

- 48x 10Gb/s ports in 1 RU card
- IOGb/s MMF 850nm VCSEL SR SFP+



LD

VCSEL

MMF

### 10G Discrete Optics

CDR

10G





### Why pluggable modules?



- Multiple applications
- Pay as you go
- Confined replaceable failures
- Common market
- Specialized R&D production
- Port density parity with Switch ASICs



- 40 Gb/s MMF 850nm VCSEL PIC SR4 QSFP+
- Also 40 Gb/s SMF 1310nm DFB laser PIC LR4 QSFP+
- 144x 10 Gb/s or 36x 40 Gb/s ports in 1 RU card



- Also100 Gb/s SMF 1310nm (InP/SIP) PIC LR4 CFP4
- 320x 10 Gb/s, 64x 40 Gb/s, or 32x 100 Gb/s ports (requires MLG I/O) in 1 RU card



- 400 Gb/s MMF 850nm VCSEL PIC SR16 CFP2
- Also 400 Gb/s SMF 1310nm (InP/SIP) PIC LR4/8 CFP2
- 100x 40 Gb/s, 40x 100 Gb/s, or 10x 400 Gb/s ports (requires MLG I/O) in 1 RU card





### Integrated Photonics: Silicon Photonics for Embedded Applications

Arlon Martin Senior Director, Marketing Mellanox

# Why do we integrate?

ethernet alliance

Density!

#### Many Terabit Switch



#### SX6036 - 2 Tb/s: 36 Port QSFP+ Switch



SX1016 - 640 Gb/s: 64 Port 10 GE Switch

SFP and QSFP pluggable transceivers provide excellent front panel density, but they do have limits

## **Embedded Optics**



- Front panel is no longer a row of transceivers
- MPO connectors provide 10-100x more density on the front panel



- WDM would increase the density another 10-100x
- Putting the optics next to the switching chip reduces power and board space
- Eliminates the need to incorporate multiple electrical transceivers between switch and front panel ports



# Silicon Photonics Integration: more than just a modulator





Generic GE-style gain chips create WDM external cavity lasers after bonding. They can be easily made in arrays.



Laser Grating



Modulator



WDM Mux/Demux

### Embedded Optics Checklist



- $\checkmark$  Use CMOS where ever possible
- √ No WDM specific lasers, no laser subassembly (no isolators, beam collimators, lens cap, etc.)
- $\checkmark$  Flip-chip laser array bonding
- $\checkmark$  No hermetic packages
- ✓ No active laser alignment
- $\checkmark$  No detector sub assembly
- √ No TEC
- $\checkmark$  No WDM assembly
- $\checkmark$  Die attach driver array
- $\checkmark$  Die attach TIA array

# Silicon photonics



- Scales to many terabits with the switching chips
- Solves front panel density problem
- Eliminates the cost and power of electrical transceivers on board
- Integrates into standard electronics board assembly process
- Best short and long term solution





### IC Vendor Perspective: Photonics Integration to Enable Versatile, Low-cost Next-gen Optical (Coherent) links

Frank Chang September 25<sup>th</sup>, 2013 Inphi Corporation





Integration substantially shrink 100/400G pluggable module form factor – KE2/istorered lace size and power

### Possible Advanced Modulations for 400GbE

- Optical PAM (Pulse Amplitude Modulation)



Source: IEEE Comm.Mag, Mar. 2013

#### - Optical DMT (Discrete Multi-Tone)



PAM4 Optical

Signal

### Beyond 100G CFP2 Coherent Flexible Transceiver



CFP2 blocks 120Gb/s QPSK @ 30GBd Linear Drive [InP-MZM] MZ Modula Ultra-compact DAC DP-QPSK 100G OTN LS Host ASIC 240Gb/s 16-QAM @ 30GBd 90 LO ۲ Degree Linear TIA BS Laser Hybrid ٢ Mixer ٢ ADC ۲ 90 ۲ Degree Hybrid ٢ Mixer Lenses PDs **Linear TIAs** Pol. rotator ΧI TIÀ 90<sup>0</sup> Linear drivers and hybrid **TIAs based on SiGe** SIG (X pol.) XQ TIA PBS or GaAs, are crucial LO for DP-QPSK, and TIA ΥI BS 90<sup>0</sup> hybrid higher-level QAM (Y-pol.) TIÀ YQ

### Hybrid Integration Implementations



Tx: Integrated Tunable Transmitter Assembly (ITTA):

- The selection of drivers is related to the MZM Vpi
- Package driver die into ITTA for further size reduction





### **Summary**



- Look for SFP+ equivalent of the 100/400G pluggable module for metro/long haul (believe that is CFP2 for telecom)
  - Tunable CFP2 coherent has an important role to play.
  - Rate-flexible transceiver for trade-off of capacity and reaches in metro – potential solution towards 400GbE
- Advanced modulation facilitates large-scale ASICs and integrated Optics – drives to lowest cost => more integration
- Hybrid integration no "one size fits all" scenario for photonics
  - Application and material/process dependent
  - ASIC, InP and non-Si PLC all will likely have a role to play
- Integration is key to reduce size & power dissipation
  - Cost, cost, cost

ECOC 2013 Panel



# And now, the debate!

© 2013 Ethernet Alliance