Progress and Challenges for Next Generation 400G Electrical Links

David R Stauffer
Kandou Bus, SA
OIF Physical & Link Layer Working Group Chair

June 12, 2014
Electrical Implementation Agreements

- CEI IA is a clause-based format supporting publication of new clauses over time:
 - CEI-2.0: added CEI-11G-LR clause
 - CEI-3.0: added work from CEI-25G-LR, CEI-28G-SR
 - CEI-3.1: will add CEI-28G-MR and CEI-28G-VSR
- CEI-11G and -28G specifications have been used as a basis for specifications developed in IEEE 802.3, ANSI/INCITS T11, and IBTA.
- CEI 56G projects are in progress:
 - MR: chip to chip
 - VSR: chip to module
 - XSR: chip to optics engine (separate chips)
 - USR: chip to optics engine (2.5D or 3D package)
Published in CEI 3.0:
- **LR**: Backplane, passive copper cable.
- **SR**: Chip-to-chip, and chip-to-module.

Published in CEI 3.1:
- **MR**: Chip-to-chip, and low loss backplane.
- **VSR**: Chip-to-module (fully retimed optics)
Next Generation Progress Toward 400G

- “OIF Next Generation Interconnect Framework” white paper lays out a roadmap for OIF electrical and optical projects to support next generation interconnects.
- CEI-56G electrical track projects were started in the Physical & Link Layer Work Group based on the white paper.
- Technical contributions have been submitted and debated. These include but are not limited to:
 - Investigations of PHY chip requirements and technology
 - Investigations of Serdes roadmaps
 - Power trade-off investigations
 - Alternate signaling investigations
- These efforts now enable the OIF to establish paths forward.
 - Target to adopt baseline technical proposals this year.
 - Target to publish CEI IAs by the end of 2015.
- The following charts describe the application spaces that have emerged for CEI-56G, and the challenges and trends that are emerging from this work.
CEI Application Space is Evolving

- The “OIF Next Generation Interconnect Framework” white paper lays out a roadmap for CEI-56G serial links.
 - 2.5D and 3D applications are becoming increasingly relevant.
 - High function ASICs (such as switch chips) are driving requirements for higher I/O density and lower interface power.
 - Chip-to-chip and mid-plane interfaces are becoming more relevant than high loss backplanes (at least in the near-term).

- Overall themes emerging:
 - Pin density is not increasing fast enough for high density ASICs.
 - Power reduction of 30% from one generation to next is not good enough.
CEI-56G Application Space:

- **MR**: Interfaces for chip to chip and midrange backplane.
 - 50 cm, 1 connector
 - 15-25 dB loss @14 GHz
 - 20-50 dB loss @28 GHz
- **VSR**: Chip-to-module
 - 10 cm, 1 connector
 - 10-20 dB loss @28 GHz
- **XSR**: Chip to nearby optics engine.
 - 5 cm, no connectors
 - 5-10 dB loss @28 GHz
- **USR**: 2.5D/3D applications
 - 1 cm, no connectors, no packages
CEI-56G Medium Reach (MR)

- Chip-to-chip standards must operate at 56 Gb/s to support 2-lane OTU-4 if.
- Chip-to-chip applications must budget for 20 inches of reach and 1 connector.
- Channel insertion loss of 15-25 dB @14 GHz
 - 28G-MR IL = 20dB @14GHz
 - Not expected to improve much for CEI-56G.
- Consensus emerging that 56 GBd NRZ is not a viable option for the MR channel.
 - PAM-4 or other advanced signaling is needed.
 - NRZ limitations are also driving interest in lower baud rates (40 GBd).
CEI-56G Very Short Reach (VSR)

- Chip-to-module standards must operate at 56 Gb/s to support 2-lane OTU-4 i/f.
- Chip-to-module applications must budget for 6 inches of reach with 1 connector.
- VSR specifies Tx and Rx parameters at the connector compliance point.
 - This is different from other CEI variants, which specify compliance at chip balls.
- Both 56G Bd NRZ and 28G Bd PAM-4 are viable signaling technologies for VSR channels.
 - Selecting NRZ would raise potential compatibility issues with CEI-56G-MR.
CEI-56G Extra Short Reach (XSR)

- Chip-to-OE standards must operate at 56 Gb/s to support 2-lane OTU-4 i/f.
- Chip-to-module applications must budget for 5 cm of reach with no connectors.
- Application is being driven by large switch chips interfacing to nearby PHY function chips (electrical or optical):
 - Pin density is not increasing fast enough to support next generation switch chips.
 - Interface power is not decreasing fast enough.
Chip-to-OE standards must operate at 56 Gb/s to support 2-lane OTU-4 i/f.

Applications must budget for 1 cm of reach with no connectors and with no packages.

Applications:
- Chip to Optics Engine interface over silicon substrate.
- Chip to memory interface over silicon substrate.
- Chip to chip interface where function has been split across multiple die.

A narrow interface is desired for chip-to-OE applications; other applications may be much wider.

Pin density and power is particularly important to applications with wide interfaces.
400G Density Challenges

- As interface speeds increase, bandwidth density must increase proportionally to maintain the value proposition.
 - Number of interface wires to/from the optics module affects physical dimensions and faceplate real estate.
- **100G Ethernet** was initially specified using existing 10Gb/s electrical link technology which hindered adoption, and is now migrating to 25Gb/s electrical link technology.
 - Ten 10Gb/s links required per direction \Rightarrow 40 wires for a full duplex lane.
 - Faceplate density for early 100G systems was worse than 10G systems.
 - Four 25Gb/s links reduces wire count \Rightarrow 16 wires for a full duplex lane.
- Faster migration path is needed for 400Gb/s Ethernet:
 - Early specifications might assume sixteen 25Gb/s links \Rightarrow 64 wires; but this would limit deployment.
 - Migration path to eight 50Gb/s links will be necessary to facilitate widespread adoption \Rightarrow 32 wires.
- Reducing I/O counts also reduces power requirements. Power dissipation remains a significant system design issue.
Power Challenges

- As baud rates increase, energy per bit trends downward while overall power per channel trends upward.
 - Each doubling of baud rate results in about 30% less power per bit.
 - Reduction in pJ/bit largely driven by process technology node migration.
 - In the future, process migration may not be sufficient to sustain similar reductions.

- System port density remains constant, and therefore power trend drives system power upward.
 - Power/cooling requirements on system are exceeding ability to air cool racks.
 - Methods to break the historical trend and flatten power increases are needed.

- Power consumption of the internet is becoming a significant portion of the planet’s energy production.
Market Bifurcation

- Application space for prior generations consisted of SR, VSR, MR, LR applications.
 - Similar signaling solution was used for the entire range of applications.
 - Common Serdes design was often used, especially on early products.
- Chip power limitations for large ASICs is forcing LR/MR Serdes function off chip.
 - Signaling for MR/LR may be different from lower loss applications.
 - Substantially different Serdes designs with substantially reduced power requirements are required for USR/XSR applications as compared to MR/LR applications.

FINISAR DEMO AT OFC 2012

Photo Source: Close Proximity Electrical Interface Project Start
Signaling and Channel Challenges

- Achieving 25 Gb/s was accomplished through evolution in both Serdes and channel technology.
 - NRZ FFE/DFE architecture evolved to add CTLE and FEC.
 - Better connector technology emerged.
 - Better backplane design and manufacturing techniques became common practice.
- Advanced signaling will likely be required for MR/LR applications at 56 Gb/s.
 - NRZ not viable at losses above 36 dB.
 - Most easily achievable channel design improvements were already deployed to support 25 Gb/s.
 - PAM-4 or other advanced signaling will be needed to support high loss applications at 56 Gb/s and up.
- NRZ is still viable for VSR and lower loss applications.
 - LR/MR will likely adopt PAM-4 or another advanced signaling technique.
 - XSR/USR will likely adopt NRZ signaling.
 - VSR signaling is to be determined.
OIF has an established history of meeting industry needs for interoperable electrical channels.

- OIF provides a forum where inputs come together from chip, connector, component, and equipment vendors.
- The complete ecosystem benefits from the industry working together.

Developing next generation 56 Gb/s electrical link technologies and standards will be more challenging than previous generations:

- NRZ is not a viable technology for higher loss applications.
- Substantial reductions in channel losses are not likely to occur.
- Power consumption is becoming an overwhelming concern.
- Power and I/O density of large ASICs is becoming constrained, causing system architecture changes and creating new interface applications.

Competing technologies are emerging and cost-crossover may eventually occur:

- Costs are dropping for optical backplane technologies.
- If cost crossover occurs, will substantially change system backplanes.

OIF is moving forward with CEI-56G projects. We expect to adopt technical baseline text for most applications at the July meeting.