Faster – 56Gb/s Standardization Efforts at the OIF

Nathan Tracy
OIF Technical Committee Chair
TE Connectivity

David R. Stauffer
OIF Physical Link Layer Working Group Chair
Kandou Bus

Ethernet Alliance TEF
Santa Clara, CA
October 16, 2014
Agenda

- OIF efforts on 56Gb/s signaling
- Electrical channels being defined
 - Physical constraints of reach at higher data rates
- Overview of the draft specifications
 - Issues being addressed
 - Solutions being developed
- Summary and Timelines
OIF Efforts Towards 56Gb/s

- OIF Physical and Link Layer (PLL) has developed:
 - Next Generation Interconnect Framework Document
 - Electrical interfaces for client side
 - Links from 10mm up to 2km
 - Electrical & Optical
- OIF PLL is currently working on:
 - Specific projects for next generation interoperable electrical interfaces
CEI Application Space is Evolving

- The “OIF Next Generation Interconnect Framework” white paper lays out a roadmap for CEI-56G serial links
- 2.5D and 3D applications are becoming increasingly relevant
 - High function ASICs (such as switch chips) are driving requirements for higher I/O density and lower interface power
 - Chip-to-chip and mid-plane interfaces are becoming more relevant than high loss backplanes (at least in the near-term)

Overall themes emerging:
- Pin density is not increasing fast enough for high density ASICs
- Power reduction of 30% from one generation to next is not good enough
CEI-56G Application Space

- **USR**: 2.5D/3D applications
 - 1 cm, no connectors, no packages

- **XSR**: Chip to nearby optics engine
 - 5 cm, no connectors
 - 5-10 dB loss @28 GHz

- **VSR**: Chip-to-module
 - 10 cm, 1 connector
 - 10-20 dB loss @28 GHz

- **MR**: Interfaces for chip to chip and midrange backplane
 - 50 cm, 1 connector
 - 15-25 dB loss @14 GHz
 - 20-50 dB loss @28 GHz

- **LR**: Interface for chip to chip over a backplane
 - 100cm, 2 connectors
 - 35dB at 14Ghz
56Gb/s Themes Emerging

- **Limitations**
 - PCB loss characteristics at higher data rates
 - Power consumption limits at the chip and line card levels

- **Methods other than NRZ signaling**
 - PAMx, Chord Signaling, DMT, etc
 - Higher Order Modulation can gain more bits per clock cycle, allowing lower baud rates

- **Alternative architectures**
 - Orthogonal structures
 - Lower loss materials such as “cable”
 - Mid board optics

Industry needs to agree on path forward to maximize interoperability
Market Bifurcation

- Application space for prior generations consisted of SR, VSR, MR, LR applications.
 - Similar signaling solution was used for the entire range of applications
 - Common SerDes design was often used, especially on early products
- Chip power limitations for large ASICs is forcing LR/MR SerDes function off chip.
 - Signaling for MR/LR may be different from lower loss applications
 - Substantially different SerDes designs with substantial power reduction are required for USR/XSR applications as compared to MR/LR applications
- Advanced signaling will likely be required for MR/LR applications at 56 Gb/s.
 - NRZ not viable at losses above 36 dB
 - Most easily achievable channel design improvements were already deployed to support 25 Gb/s
 - Higher order modulation (PAMx, Chord Signaling, etc.) will be needed to support high loss applications at 56 Gb/s and up

Mid board optics:
- Shorten the electrical channel
- Relieve power limitations on system ASIC
CEI-56G Solution Options

- OIF contributions have considered various signaling solutions for these application spaces:
 - NRZ – optimal power and complexity solution for lower loss applications but not feasible at higher loss ranges.
 - PAM4 – reduces Nyquist frequency, supporting higher loss ranges.
 - Chord Signaling – Also reduces Nyquist frequency, supporting higher loss ranges.

<table>
<thead>
<tr>
<th></th>
<th>NRZ is clearly optimal solution.</th>
<th>Disputed territory: both NRZ and HOM solutions will work.</th>
<th>Higher Order Modulation (PAM or Chord Signaling) needed to address this space.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEI-56G-VSR</td>
<td></td>
<td>CEI-56G-MR</td>
<td>CEI-56G-LR</td>
</tr>
<tr>
<td>CEI-56G-USR</td>
<td>CEI-56G-XSR</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>@28 GHz</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>30</th>
<th>35</th>
<th>40</th>
<th>45</th>
<th>50</th>
<th>55</th>
<th>60 dB</th>
</tr>
</thead>
<tbody>
<tr>
<td>@14 GHz</td>
<td></td>
<td>12</td>
<td>15</td>
<td>18</td>
<td>21</td>
<td>24</td>
<td>27</td>
<td>30</td>
<td>32</td>
<td>35</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- NRZ is clearly optimal solution.
- Disputed territory: both NRZ and HOM solutions will work.
- Higher Order Modulation (PAM or Chord Signaling) needed to address this space.
Push for Serdes commonality between application spaces has been driving factor for baseline text adoption.

Optics vendors want Common Serdes for VSR & XSR.

ASIC and FPGA vendors want Common Serdes for MR & VSR.

NRZ and proprietary solutions will be used in die-to-die applications.

LR Serdes will typically be off-boarded from ASIC/FPGA. Commonality is less of an issue.
CEI-56G Baseline Clauses

- **CEI-56G-USR**
 - NRZ baseline clause have been adopted for USR.
- **CEI-56G-XSR**
 - NRZ & PAM4 baseline clauses have been adopted for XSR.
- **CEI-56G-VSR**
 - NRZ & PAM4 baseline clauses have been adopted for VSR.
- **CEI-56G-MR**
 - PAM4 baseline clause has been adopted for MR.
- **CEI-56G-LR**
 - Baseline clause will be adopted 2Q15.

- 3D Stack
- 2.5D Die-to-Die
- Chip
- Optics
- Chip to Nearby OE
- Chip-to-Module
- Chip-to-Chip & Midplane Applications
- Backplane or Passive Copper Cable
Summary

- Six draft implementation agreements are in process
 - NRZ: USR, XSR, VSR
 - PAM4: XSR, VSR, MR
 - LR does not yet have a draft started yet

- Projected timelines:
 - Quarterly liaisons planned to IEEE 802.3bs project
 - Technically stable documents (no TBDs) in early 2015
Thank You

OIForum.com