FlexEthernet - Protocols and Components

Mark Gustlin
Principal System Architect
October 16th 2014
Introduction

The Goals of the FlexEthernet protocol definition are:

- Support the required use cases
- Simple and efficient protocol that can run over existing and future Ethernet PMDs and electrical interfaces without change to the PMDs or interface definitions

The next few slides explore the current thinking about the protocol and how that impacts IEEE PMDs/Interfaces
Initial thinking on FlexEthernet was to re-use/or make it similar to MLG

MLG is an example of good opportunistic re-use of an existing industry protocol

- MLG 1.0 and 2.0 re-uses the 100GbE Physical Coding Sublayer (PCS)
- Supports carrying nx10GbE and nx40GbE over nx25GbE lanes

Then 802.3bj came along and added RS-FEC to 100GbE

- The FEC is required for many copper and optical interfaces now, backplane, multi-mode fiber and some MSA optics
- Using RS-FEC requires transcoding and some manipulations of the Alignment Markers
- The PHYs as defined in 802.3bj and 802.3bm cannot transparently carry MLG 1.0 or 2.0, MLG is in place of the PCS, does not run over a standard PCS
- This required a new MLG version (3.0) which is currently being developed

Would be better if future MLG can be carried transparently over any current or future Ethernet PMDPHY

And translated to FlexE, we should design FlexE to be carried transparently over future new PMDs/Interfaces
FlexEthernet’s Flexibility

- Goal of the protocol, in addition to supporting the desired use cases, is to run transparently over any current or future IEEE PMD or electrical interfaces (PHYs).
- Each time a new PMD or interface is defined, we don’t want to be compelled to redefine FlexE.
- What does this mean?
 - To Ethernet FlexE should look like data or control which is then transparently carried.
 - No reliance on FlexE knowing what IEEE is doing, nor should any IEEE PMD/Interface care about what FlexE is doing.

![Diagram showing FlexE Data, FlexE Control, Unused BW, and Ethernet Control.](image)
FlexEthernet’s Flexibility

What complications are there?

- We still want a simple protocol, without complicated floating payloads with pointer processing for instance
- Deleting/inserting idles is what is used in 100GbE interfaces for adding in alignment mechanisms
- If we have to add/remove alignment or other mechanisms at multiple layers of an implementation, how do we do that without dependencies on those layers?
- This is especially a problem if the complete data path is carried over multiple physical paths, you don’t always have the full view of the packet data to delete Ethernet idles

How to solve these concerns?

- Looking at defining a unique FlexEthernet framing structure to delineate FlexEthernet data
- Exploring unique FlexEthernet Idles (in place of Ethernet Idles) to allow flexible rate adaptation along a FlexEthernet path
 - A given FlexEthernet steam might not have enough information to be able to delete Ethernet Idles
You can re-use standard IEEE PCS implementations, and add on the FlexEthernet protocol and the FlexEthernet MAC.

<table>
<thead>
<tr>
<th>FlexE 200G MAC</th>
<th>FlexE Protocol Layer</th>
<th>IEEE Standard 100G PCS</th>
<th>IEEE Standard 100G PCS</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEEE Standard 100G MAC</td>
<td>IEEE Standard 100G PCS</td>
<td>FlexE 200G MAC</td>
<td>FlexE Protocol Layer</td>
</tr>
<tr>
<td>PMD Module</td>
<td>PMD Module</td>
<td>PMD Module</td>
<td>PMD Module</td>
</tr>
</tbody>
</table>
PMD Impacts

The goal is to use IEEE PMDs as is for FlexEthernet

- For example a 100GBASE-LR4 or 100GBASE-SR4 optics module with accompanying PHY protocol stack can be re-used without modification
- MSA defined PMDs should also work without modification, for example CWDM4
- So no impact!

What this implies to the FlexEthernet protocol:

- Same per lane rate on the PMDs
- Therefore we must delete extra idles from the MAC stream to make room for the FlexEthernet overhead in addition to the normal overhead used for a given IEEE PHY
 - Normal IEEE overhead is Alignment Markers for multi-lane interfaces
- FlexEthernet must run transparently through the IEEE PHYs, so must look like data so it survives transcoding unaltered
Thanks!